"Non-local A-movement" is predicted to exist, and it does

Giovanni Roversi (MIT) April 25, 2025; WCCFL 43

1 WE SHOULD HAVE EXPECTED THIS ALL ALONG

1.1 Two pre-existing ingredients

THE FEATURAL THEORY OF THE A/Ā-DISTINCTION

- ► The reason why "A-movement" is different from "Ā-movement" is not their landing site, but the **features** triggering the movement (van Urk 2015 et seq.)
- ▶ When the movement-triggering probe looks for...
 - $\triangleright \Phi$ -features \Longrightarrow "A-movement"
 - $\triangleright \bar{A}$ -features \Longrightarrow " \bar{A} -movement"
- ▶ List elaborated from van Urk (2015: 23) and Richards 2014: 167–169

(1) A-properties:

- a. Strictly local
- b. Influences case and φ -agreement
- c. Restricted to nominals
- d. No Condition C reconstruction
- e. No Weak Crossover
- f. New binding antecedents
- g. Doesn't license parasitic gaps

(2) **Ā-properties**:

- a. Can skip nominals
- b. Doesn't influence case and φ -agr.
- c. Not restricted to nominals
- d. Reconstruction for Condition C
- e. Weak Crossover
- f. No new binding antecedents
- g. Licenses parasitic gaps

► How the different properties follow from the featural distinction (van Urk 2015):

- \triangleright (Locality:) every nominal has ϕ -features, so they will all intervene for each other; not every constituent has \bar{A} -features, so a probe won't see the non- \bar{A} -marked constituents on its way to the relevant one
- \triangleright **Feeds case and φ-agreement**: close relation between φ-probing and case assignment (Chomsky 2001, et seq.)
- \triangleright Categorial restrictions: A-movement is DP-only because only DPs have ϕ -features; any XP can have \bar{A} -features
- ▶ Binding-theoretical properties (Condition C, WCO, anaphor/variable binding, parasitic gaps): movement triggered by φ-agreement abstracts over *individuals*; movement triggered by Ā-features abstracts over *choice functions*

RELATIVIZED PROBES

- ► In the last 20+ years, rich literature about agreement patterns where a probe is sensitive to certain specific φ -features, rather than all φ -features in general
 - ▷ Only [PART] arguments, only [PL] arguments, only [PART, ADDR], etc.
 - ▷ Béjar (2003), Béjar & Rezac (2003, 2009), Nevins (2011), and Deal (2015, 2024a,b, to appear), among many many others
- ► Example from Chirag Dargwa (3): the probe on the verb specifically wants something with a [PART] feature
 - ▶ If the object is [PART] and the subject is 3rd person, the probe will agree with the object despite it being less local (3c)
 - ▷ In prose: "Agree with the closest [PART] constituent"
- (3) Omnivorous agreement for [PART]: (Sumbatova 2011: 135) (Chirag Dargwa)

```
a. \frac{dicce}{1sg.erg} {Su / it} r-iqqan\frac{-da}{1sg.erg} 2sg.ABS 3sg.ABS F-lead-1 'I lead you/her'
```

```
b. ficce du r-iqqan -de

2sg.erg 1sg.abs F-lead-2

'You lead me'
```

c. *ite* du r-iqqan(-da)

3SG.ERG 1SG.ABS F-lead-1

'S/he leads me'

1.2 Combining the ingredients

- ► If...
 - \triangleright 1) A-movement can only target the closest nominal because it's triggered by φ -probing, and all nominals have φ -features,
 - \triangleright And, 2) φ -probing can be relativized to more specific features,
- ► Then we should expect **non-local A-movement**: a nominal further away is chosen for A-movement by a probe over a more local one
 - ▷ Restricted: this should only be possible if there is a featural reason to do so! It's just Relativized Minimality all along (Rizzi 1990)
- ► My claim: this does exist.
 - ▶ The nice thing about this talk: I could be completely wrong about my empirical data, but *this is still predicted to exist somewhere out there*. Go look!

1.3 Preview of the talk

- ► In Äiwoo, movement to spec,TP can target either the subject or the object
 - \triangleright Pronouns (" π ", abbreviated) and full DPs compete for movement to specTP
 - ▶ Pronouns are moved preferentially over full DPs, regardless of case/theta role/ grammatical relation/"licensing"
- (4) Pronouns preferred for movement to spec,TP:

```
a. \pi > DP: move subj
b. DP > \pi: move obj!
c. \pi > \pi: move subj
d. DP > DP: move subj
```

- \triangleright "If there is a pronoun (4a,b), move that, regardless of where it is;
- \triangleright If there are two pronouns (4c), move the closest one;
- ▷ If there are no pronouns (4d), ok, just move the highest thing then"

CLAIM: "NON-LOCAL A-MOVEMENT" IS POSSIBLE

- ▶ A-movement does not need to be strictly local, and can potentially skip nominals
- ▶ Not unrestricted: there must be a featural reason to do so

2 Non-local "A-movement" in Äiwoo

2.1 SETTING THE STAGE

- ► Äiwoo (Oceanic; Solomon Islands): Austronesian voice system, strict **V2** word order (≈ Dinka; van Urk 2015), but **complex word order alternations** in Undergoer Voice
 - ⊳ Almost only descriptive literature: Næss (2006, 2015, 2021), a.o.
- ▶ What matters for today: there are 3 argument "slots"
- (5) <u>täpilo enge</u> i-ngä <u>Anna</u>=to=waa=kä <u>sii</u> bowl this ASP-eat <u>Anna</u>=PRF=FUT=CV fish 'Anna will have eaten (the) fish in this bowl'
- ► General template: [CP] V [TP] =TAM [vP] (...adjuncts...)
 - Ask me why I think these are ≈ correct labels for these positions
 - ➤ Today we're focusing on the slot between the verb and the TAM particles, that I label spec,TP. We're mostly gonna ignore the rest. Ask me about it!
 - ▷ Glosses: "MIN/AUG" ≈ SG/PL; "12" = first person inclusive ("1st + 2nd person")

- ► Caveat: a white lie/simplifying assumption
 - ▷ In this presentation I talk about full lexical DPs vs. pronouns
 - This is a simplification: in reality, the cut goes between {lexical DPs and 3MIN pronouns} vs. {non-3MIN pronouns}
 - \triangleright Very clearly about φ -features!
 - ▷ I will use the DP vs. pronoun distinction for ease of exposition, and ignore 3MIN pronouns. The argument will still hold in the same way.
 - ▷ In Appendix A you can see the full rehashed implementation, taking care of this wrinkle and another particular effect we see in 1 > 2 combinations

2.2 THREE POSSIBLE WORD ORDERS

▶ What about normal transitive clauses, with 2 arguments? Three possible patterns: (these are not free alternatives, only one of them will be \checkmark for any given sentence)

 \blacktriangleright Here are the three patterns, with a concrete minimal set ((7a,b) are the same pattern):

```
Mary = kaa<sup>1</sup>
(7)
     a. John ku-potaa
                                                                           = (6a)
        John IPFV-search.uv Mary=FUT
        'Mary will look for John'
     b. John ku-potaa-mu=waa
                                                                           = (6a)
        John IPFV-search.UV-2MIN=FUT
        'You will look for John'
     c. (iumu) ku-potaa-(gu-mu)=waa
                                               Marv
                                                                           = (6b)
         2MIN IPFV-search.uv-obj-2MIN=FUT Mary
        'Mary will look for you'
     d. (iumu) ku-potaa-mu=waa
                                          iu
                                                                           = (6c)
               IPFV-search.uv-2min=fut 1min
        'You will look for me'
```

- ► Any argument in spec, CP (the preverbal position) can and most often will be dropped, but can also be pronounced overtly if desired
- \blacktriangleright The suffixal φ-markers in spec,TP (7c,d) *cannot* be dropped, even if you pronounce the full pronoun overtly in spec,CP

¹ The future marker is =Caa, with the first consonant depending on what's immediately to its left. The default exponent is =kaa, but it can also surface as =waa, =naa, =ngaa, =laa, and =aa.

2.3 The stuff between V and =TAM is a real argument

- ► I promised you that you'd see an argument between the verb and the =TAM particles, but in (7b-d) you see just some suffixal φ -markers. Are we so sure?
- ► Claim: the suffixal φ-markers in that position are a spell-out of **an actual pronoun occupying spec,TP**. They're not agreement, and not "clitics" (= a head attached to a functional projection)
- ► **Argument 1**: this position can host something that is clearly a (non-pronominal) argument, aka a full DP (7a). Therefore, this must be a **specifier position**.
 - ▷ A DP in this position can be arbitrarily long, cf. this naturally attested example
 with a DP containing a full relative clause:
- (8) ngaama $l\hat{a}$ ba i- $k\ddot{a}\ddot{a}$ $[me=[_{RC}$ ki-tokoli- $moli-m\ddot{a}$ $ng\ddot{a}$ $botu]]=gu=n\hat{a}$ if DIST NEG ASP-know.UV REL:person=IPFV-sit-down-DIR1 in boat=NEG=DIST 'If the person sitting in the boat doesn't know (it), ...'
- \blacktriangleright Argument 2: the suffixal φ-markers are incompatible with an overt DP in that same position. You can have one or the other, but not both:
- (9) Complementarity between a pronominal suffix and a lexical DP in spec,TP:
 - a. **John** ku-potaa **mikilitei**=kaa **John** IPFV-search.UV **fishermen**=FUT 'The fishermen will look for John'
 - b. **John** ku-potaa-**i**=laa **John** IPFV-search.UV-**3AUG**=FUT
 'They will look for John'
 - c. * John ku-potaa-i mikilitei=kaa
 John IPFV-search.UV-3AUG fishermen=FUT
 - ⊳ The impossibility of co-occurrence of the suffix -*i* and the DP *mikilitei* 'fishermen' tells us this is not your usual agreement, but something pronominal
 - Difference from the Irish/Celtic pattern (McCloskey & Hale 1984 et seq.): the complementarity holds even between different arguments
 - ▷ If the object is a suffix in this position, the subject must remain low (10). Syntactically, it's as if the object is "taking up" this slot.
- (10) (iumu) ku-potaa-gu-mu =waa Mary
 2min ipfv-search.uv-obj-2min=fut Mary
 'Mary will look for you'
 - ▷ It's as if in Romance, cliticization of the object would prevent subject movement to spec,TP. This is not how it works for Romance clitics at all!

- ▶ Argument 3: The only time we see "doubling", aka both a suffixal marker in this position and an overt argument, the overt argument is *somewhere else*, when the same argument occupies both this position and the preverbal one (7c,d)/(10)
 - ▷ I think the best way to make sense of this is to just say that the suffix in spec,TP is simply an obligatory spell-out of a lower copy of movement
 - Do we ever see other lower copy spell-outs in the language? Yes! In the "default" O V S=TAM pattern, if the object DP is plural we can optionally realize its plural feature down below in the base-generated position of the object, in the form of a pronoun:
- (11) **pedevalili** ku-potaa-**de**=ngaa (ijii) children IPFV-search.UV-12AUG=FUT 3AUG 'We will look for the children' (ijii is optional)

▷ (I will only talk about the movements to spec,TP, ignoring what moves to spec,CP. Ask me in the breaks!)

2.4 Getting the morphology right

- ► If the things in specTP are real pronouns, why do they look like suffixes and not like the full pronouns you find elsewhere? We just have to say it's morphology.
 - ⊳ See Akkuş et al. (2024) for a monograph-length argument that this is *not* a bad thing: syntax ≠ morphophonology! Also Yuan (2021), a.o.
- ► Pronouns have a default "full" form and a smaller, affixal one, that is found in this context: conditioned allomorphy
 - \triangleright The morpheme -*gu* only ever shows up when the object, rather than the subject, is in this position. Only "case" difference in the whole language
- (13) a. $[2MIN, ACC] \Leftrightarrow -gu-mu / V$
 - b. $[2MIN] \Leftrightarrow -mu / V$
 - c. $[2MIN] \Leftrightarrow iumu$ (elsewhere)

- ► Supporting evidence: we also find this shorter suffixal form when a pronoun is the complement of a preposition (14b); the full pronoun is impossible (14c)
 - ⊳ There's nothing *syntactically* different between 'John' in (14a) and the pronoun in (14b), so the difference must be morphological
- (14) a. ngâgo John b. ngâgu-mu c. *ngâg{o/u} iumu
 PREP John PREP-2MIN PREP 2MIN
 'To/for John' 'To/for you' 'To/for you'
 - ► Amending the VI rules:
- (15) a. $[2MIN] \Leftrightarrow -mu / \{V, P\}$ b. $[2MIN] \Leftrightarrow iumu$ (elsewhere)
 - ► See Appendix B for more details about the morphology of pronouns in Äiwoo

3 What moves to spec,TP?

► What determines what pattern we get in any sentence? Whether the **arguments are DPs or pronouns**. The full distribution again (just reordered):

```
(16)
      a. John ku-potaa-(mu)=waa
                                                                            (\pi) > DP
         John IPFV-search.uv-2MIN=FUT
         'You will look for John'
      b. (iumu) ku-potaa-(gu-mu)=waa
                                                                            DP > \pi
                                                 Mary
                 IPFV-search.uv-obj-2min=fut Mary
         'Mary will look for you'
      c. (iumu) ku-potaa-(mu)=waa
                                                                              |\pi| > \pi
          2MIN IPFV-search.uv-2MIN=FUT 1MIN
         'You will look for me'
      d. John ku-potaa
                                                                           |\mathbf{DP}| > \mathbf{DP}
                                (Mary)=kaa
         John IPFV-search.uv Mary=FUT
         'Mary will look for John'
```

► In prose: 'Move the closest pronoun. If there's none, just move the closest nominal'. This is a typical "omnivorous"/"picky probing" pattern!

► What T is **not** doing:

- ▷ Case discrimination: it can move any argument, not only NOM or only ACC
- ▷ "Licensing": either argument can remain low, if T moves something else

3.1 Is this really A-movement?

- ► Let's revisit our chart of the differences between A/Ā-movement, assigning scores. The grayed-out lines are untestable/uninformative
 - ➢ Äiwoo doesn't have any agreement in T nor any case morphology (apart from -gu on object pronouns in spec,TP, see above)
 - ➤ The moved argument is very often a pronoun, which makes it impossible to test Condition C reconstruction (I can't put an R-expression inside a pronoun). Same problem for binding antecedents
 - ▷ I have no idea how parasitic gaps work in this language, if they even exist

(18)	A-p	properties: (19)	Ā-ŗ	properties:
	a.	Strictly local	a.	✓ Can skip nominals
	b.	Influences case/φ-agreement	b.	Doesn't influence case/φ-agree.
	c.	✓ Restricted to nominals	c.	Not restricted to nominals
	d.	No Condition C reconstruction	d.	Reconstruction for Condition C
	e.	✓ No Weak Crossover	e.	Weak Crossover
	f.	New binding antecedents	f.	No new binding antecedents
	g.	Doesn't license parasitic gaps	g.	Licenses parasitic gaps

► Locality and category;

- ▷ Also, it is clearly restricted to nominals: no other category can ever move to spec,TP in Äiwoo
- ► Testable: movement to spec,TP doesn't induce a Weak Crossover violation (20)
- (20) [Context: we are talking about a group of girls who are coming back from a long trip, and their mothers are missing them very much.]

```
ijidui ki-te-usi-k\ddot{a}-gu-i=laa is\ddot{a}-i t_{Obj}

3AUG.all IPFV-see.UV-again.UV-DIR3-OBJ-3AUG=FUT mother-3AUG

Bound reading: \forall x, x's mother will see x again

\approx 'Her; mother will see every one; of them again'
```

► Score: 2-1 for A-movement

- More seriously: at least for what we can test, the only Ā-style property of this movement is the locality profile, which has an independent featural justifica-tion (see implementation below)
- ▷ "Mixed A/Ā-movement" would be misleading or at best uninformative

3.2 AN IMPLEMENTATION

- Assumption: both DPs and pronouns have [φ]; pronouns also have a feature [π] (Sichel & Toosarvandani 2024, a.o.)
- \blacktriangleright Here I am using the probe notation [uF] because it's simplest
 - The full/unsimplified system, discussed in Appendix A, will actually need the interaction/satisfaction model of Agree (Deal 2015, 2024a, to appear), but for now we don't need it
- ► We need to derive a "Plan A/Plan B" logic: T prefers to move a pronoun, but it will backtrack to moving a DP if it can't find a pronoun
- ► T has two ordered probes: the first one wants to move pronouns (" π -probe", [$u\pi$]), and the second one wants to move anything with [φ] (" φ -probe", [$u\varphi$])
- ► If the π -probe finds and moves something, the φ -probe is automatically also checked off. How?
 - > "Multitasking" (van Urk & Richards 2015). Implementation from Scott (2021):
 - \triangleright If the π-probe finds and moves something, the φ-probe reprojects to the bar level (per Cyclic Agree terms and conditions; Béjar & Rezac 2009).
 - \triangleright Now the closest thing in its c-command domain is its sister node, aka, the moved goal of the π -probe in specTP
 - \triangleright The features of the π-probe goals (pronouns) are a proper superset of the features of the φ -probe goals (any nominals), so anything moved by the π -probe will automatically also check off the φ -probe
- ▶ Note: this is just a particular *implementation* of the idea of Multitasking
 - ▷ "Isn't this just a restatement of the facts?" Yes, pretty much, but it's a restatement clever enough that it doesn't add any new mechanisms to the theory than the ones we already independently need (Cyclic Agree, Bare Phrase Structure, ordered probes)
 - ▷ If you prefer Multitasking, where a probe can compare two equidistant goals and evaluate what the most appropriate goal is (or other mechanisms yet), be my guest

(21) a. $(\pi > \pi)$: move subject

 \triangleright π-probe. Check S: does it have [π]? Yes. Move S. Stop.

 \triangleright φ-probe. Check S: does it have [D]? Yes. (Move S vacuously.) Stop.

b. $\pi > DP$: move subject

 $ightarrow \pi$ -probe. Check S: does it have $[\pi]$?

Yes. Move S. Stop.

▷ φ-probe. Check S: does it have [D]? Yes. (Move S vacuously.) Stop.

c. $(DP > \pi)$: move object

 $ightharpoonup \pi$ -probe. Check S: does it have $[\pi]$? No. Check O: does it have $[\pi]$? Yes. Move O. Stop.

d. (DP > DP: move subject)

 \triangleright π -probe. Check S: does it have $[\pi]$? No. Check O: does it have $[\pi]$? No. (Do nothing.) Stop.

 $\label{eq:phi-probe} \begin{tabular}{l} \triangleright ϕ-probe. Check S: does it have [D]? Yes. \\ Move S. Stop. \\ \end{tabular}$

4 Conclusion

- ▶ Our theory predicted an as-yet unattested type of movement to be possible:
 - ▷ All the case/agreement-properties, category restrictions, and binding-theoretical properties typical of A-movement
 - *But*, able to skip some nominals as long as there's some kind of featural reason
- ▶ Äiwoo confirms our (unnoticed?) prediction: this kind of movement does exist
- ► Supporting argument for the featural theory of the A/Ā-distinction!
 - ⊳ "Strictly local" is not a defining property of "A-movement", and "not strictly local" is not a defining property of "Ā-movement". Both types of locality profile are just epiphenomenal (van Urk 2015)
 - \triangleright It just so happens that most cases of A-movement are triggered by a flat ϕ probe, so every nominal will be a potential valid goal and thereby intervener

References

Akkuş, Faruk, David Embick & Mohammed Salih. 2024. Case and the syntax of argument indexation: An analysis of Sorani Kurdish. Ms., UMass Amherst & UPenn.

Béjar, Susana. 2003. *Phi-syntax: A theory of agreement*. University of Toronto dissertation. Béjar, Susana & Milan Rezac. 2003. Person licensing and the derivation of PCC effects. In Ana Teresa Perez-Leroux & Yves Roberge (eds.), *Romance linguistics: Theory and acquisition*, 49–62. Amsterdam: John Benjamins.

Béjar, Susana & Milan Rezac. 2009. Cyclic Agree. *Linguistic Inquiry* 40(1). 35–73. https://doi.org/10.1162/ling.2009.40.1.35.

Chomsky, Noam. 2001. Derivation by phase. In Michael Kenstowicz (ed.), *Ken Hale: A life in language*, 1–52. Cambridge, MA: MIT Press.

Deal, Amy Rose. 2015. Interaction and satisfaction in φ -agreement. *Proceedings of NELS* 45(1). 179–192.

Deal, Amy Rose. 2024a. Interaction, Satisfaction, and the PCC. *Linguistic Inquiry* 55(1). 39–94. https://doi.org/10.1162/ling_a_00455.

Deal, Amy Rose. 2024b. Probe-specific locality. Talk given at the Berkeley Syntax & Semantics Circle, March 15, 2024.

Deal, Amy Rose. to appear. Current models of Agree. In James Crippen, Rose-Marie Déchaine & Hermann Keupdjio (eds.), *Move and Agree: towards a formal typology*. Amsterdam: John Benjamins.

Grishin, Peter. 2023. Omnivorous third person agreement in Algonquian. *Glossa: a journal of general linguistics* 8(1). https://doi.org/10.16995/glossa.8874.

Harley, Heidi & Elizabeth Ritter. 2002. Person and Number in Pronouns: A Feature-Geometric Analysis. *Language* 78(3). 482–526. https://muse.jhu.edu/pub/24/article/19419.

- Matushansky, Ora. 2006. Head movement in linguistic theory. *Linguistic Inquiry* 37(1). 69–109.
- McCloskey, James & Kenneth Hale. 1984. On the syntax of person-number inflection in modern Irish. *Natural Language & Linguistic Theory* 1(4). 487–533. https://doi.org/10.1007/BF00417057.
- Næss, Åshild. 2006. Bound Nominal Elements in Äiwoo (Reefs): A Reappraisal of the "Multiple Noun Class Systems". *Oceanic Linguistics* 45(2). 269–296. http://www.jstor.org/stable/4499965.
- Næss, Åshild. 2015. Voice at the Crossroads: Symmetrical Clause Alternations in Äiwoo, Reef Islands, Solomon Islands. *Oceanic Linguistics* 54(1). 270–307. https://muse.jhu.edu/pub/5/article/586715.
- Næss, Åshild. 2021. Voice and Valency Morphology in Äiwoo. *Oceanic Linguistics* 60(1). 160–198. https://doi.org/10.1353/ol.2021.0005.
- Nevins, Andrew. 2011. Multiple agree with clitics: person complementarity vs. omnivorous number. *Natural Language & Linguistic Theory* 29(4). 939–971. https://doi.org/10.1007/s11049-011-9150-4.
- Richards, Norvin. 2014. A-bar movement. In Andrew Carnie, Dan Siddiqi & Yosuke Sato (eds.), *The Routledge Handbook of Syntax*, 167–191. London: Routledge.
- Rizzi, Luigi. 1990. Relativized minimality. Cambridge, MA: MIT Press.
- Roversi, Giovanni. 2020. How to satisfy probes: person/number hierarchy effects in Äiwoo. *Proceedings of NELS* 50(3). 99–112.
- Scott, Tessa. 2021. Formalizing two types of mixed A/A' movement. Ms., UC Berkeley.
- Sichel, Ivy & Maziar Toosarvandani. 2024. The Featural Life of Nominals. *Linguistic Inquiry*. 1–56. https://doi.org/10.1162/ling_a_00517.
- Sumbatova, Nina R. 2011. Person hierarchies and the problem of person marker origin in Dargwa: facts and diachronic problems. In Gilles Authier & Timur Maisak (eds.), *Tense, aspect, modality, and finiteness in East Caucasian languages*, 131–160. Bochum: Universitätsverlag Dr. N. Brockmeyer.
- van Urk, Coppe. 2015. *A uniform syntax for phrasal movement: A case study for Dinka Bor.* MIT dissertation.
- van Urk, Coppe & Norvin Richards. 2015. Two Components of Long-Distance Extraction: Successive Cyclicity in Dinka. *Linguistic Inquiry* 46(1). 113–155. https://doi.org/10.1162/LING a 00177.
- Yuan, Michelle. 2021. Diagnosing Object Agreement vs. Clitic Doubling: An Inuit Case Study. *Linguistic Inquiry* 52(1). 153–179. https://doi.org/10.1162/ling_a_00366.
- Yuan, Michelle. 2025. Morphological conditions on movement-chain resolution. *Natural Language & Linguistic Theory* 43(1). 509–562. https://doi.org/10.1007/s11049-024-09620-w.

A THE FULL, UNSIMPLIFIED SYSTEM

A.1 Types of clauses and their distribution

- ► Undergoer Voice (UV) clauses in Äiwoo come in one of **four** different word orders, depending on the φ-features of both arguments
 - \triangleright The one I didn't talk about in the main talk is "UV_{1>2}" (22e)
- (22) a. UV_{plain} :

b. UV_{plain}:

```
John ku-tu-usi-kâ-mu=waa ngä party
John IPFV-bring.UV-back.UV-DIR3-2MIN=FUT to party
'You will bring John back to the party'
```

c. UV_{gu} :

```
(iumu) ku-tu-usi-kâ-gu-mu =waa John ngä party
2MIN IPFV-bring.uv-back.uv-dir3-obj-2MIN=fut John to party
'John will bring you back to the party'
```

d. UV_{SVO} :

```
(iumu) ku-tu-usi-kâ-mu=waa iu ngä party
2MIN IPFV-bring.UV-back.UV-DIR3-2MIN=FUT 1MIN to party
'You will bring me back to the party'
```

e. $UV_{1>2}$:

```
(iu) ku-tu-usi-kä-nee-mu=waa ngä party
1MIN IPFV-bring.UV-back.UV-DIR3-1MIN-2MIN=FUT to party
'I will bring you back to the party'
```

▶ The word order and distribution of the different clause types are shown in (23)–(24).

(23) Word order overview of UV clause types:

	"UV _{plain} "	" UV_{gu} "	"UV _{SVO} "	"UV _{1>2} "
Word order:	(O) V S =TAM	(O) V- gu - π_O =TAM S	(S) V- π_S =TAM O	(S) $V-\pi_S-\pi_O=TAM$
νP:	nothing	Subj	Obj	nothing
Spec,TP:	Subj	Obj	Subj	Subj & Obj
Spec,CP:	Obj	Obj	Subj	Subj

(24) Distribution of UV clause types:	(24)	Distribution	of UV	clause	types:
---------------------------------------	------	--------------	-------	--------	--------

$S\downarrow$, $O\rightarrow$	1	12	2	3Aug_{π}	$3min_{\pi}$	DP
1	_	_	$UV_{1>2}$	UV _{SVO}	UV_{plain}	UV_{plain}
12	_	_	_	UV_{SVO}	UV _{plain}	UV _{plain}
2	UV_{SVO}	_	_	UV_{SVO}	UV _{plain}	UV _{plain}
3Aug_{π}	UV_{SVO}	UV _{SVO}	UV_{SVO}	UV_{SVO}	UV_{plain}	UV _{plain}
$3min_{\pi}$	UV_{gu}	UV_{gu}	UV_{gu}	UV_{gu}	UV _{plain}	UV _{plain}
DP	UV_{gu}	UV_{gu}	UV_{gu}	UV_{gu}	UV _{plain}	UV _{plain}

- \triangleright I am excluding here reflexive combinations (1 > 1, 2 > 2) and combinations with overlapping reference ($\{1/2\} > 12, 12 > \{1/2\}$). All 3 > 3 combinations are intended as non-reflexive
- ▶ What is interesting to us in this respect is **what moves to spec**,**TP**, given what the subject and the object are. Same table as in (24), but with this information instead:

(25) Complete overview of what moves to spec,TP:

$S\downarrow$, O \rightarrow	1	12	2	3Aug_{π}	$3min_{\pi}$	DP
1	_	_	S+O	S	S	S
12	_	_	_	S	S	S
2	S	_	_	S	S	S
3Aug_{π}	S	S	S	S	S	S
$3min_{\pi}$	O	O	O	O	S	S
DP	O	O	O	O	S	S

▶ Note: our generalization of "Move the highest pronoun; only move a DP if there is no pronoun" was *almost* right.

A.2 Modelling the hierarchy effect

- ▶ We can see a clear hierarchy effect:
 - \triangleright If the subject has marked φ -features (non-3MIN), move it (top <of the table).
 - ▷ If the subject was 1st person: if the object is 2nd person, move that too; else stop
 - \triangleright If the subject does not have marked φ -features (3MIN pronoun, or lexical DP):
 - \triangleright Does the object have marked φ -features? If so, move it (bottom left corner)
 - ▷ Else, backtrack and move the subject
- ▶ We need a slightly non-standard featural assumption: 3rd person *is* a person feature (following Grishin 2023, contra Harley & Ritter 2002 et seq.)

- ▶ We need to be able to single out the set "non-3MIN": the only possibility is an ugly disjunction [PART or 3AUG]
- Dust "[PART or Aug]" won't work, because it would group *all* plural forms in the same way, while we want 1Aug to pattern with 1MIN
- ► Here I'm writing it down as "PART" vs "3", but one could also do [±PART]

(26) Featural breakdown:

1min	$[\phi, PART]$	1AUG	$[\phi, part, aug]$
12min	$[\phi, PART, ADDR, SPKR]$	12AUG	$[\phi, PART, ADDR, SPKR, AUG]$
2min	$[\phi, PART, ADDR]$	2AUG	$[\phi, PART, ADDR, AUG]$
3min	$[\varphi, 3]$	3aug	[φ, 3, AUG]
DP	$[\phi]$		

- ▶ Then, we need to revise our probing system ever so slightly, making it more complex
 - ⊳ Now we need the INT/SAT model of Agree (Deal 2015, 2024a, to appear).
- ► Some notational/implementational remarks:
 - ▶ F↑: "dynamic interaction" (Deal 2024a). Upon agree with something that carries a feature [F], copy [F] onto the interaction condition of the probe. In prose: "if you agree with a goal with [F], only keep agreeing with other goals if they also have [F]".
 - \triangleright Note: logically, $[P \lor Q] \land P = [P]$
 - \triangleright After dynamic interaction: [INT: [PART or 3AUG]^M] \Longrightarrow [INT: [PART]^M]
 - \triangleright F^M: if you interact with/are satisfied by a goal with feature [F], move it. (Basically, EPP)
- ► The only thing that will change is the first probe. Instead of $[u\pi]$, we need this ugliness: [INT: [PART↑ or 3AUG]^M; SAT: [ADDR or 3AUG]]
- \blacktriangleright The full algorithm is given in (27)
 - \triangleright Note: I exclude combinations of subjects and objects with identical reference (1 > 1, 2 > 2) or overlapping $(\{1/2\} > 12, 12 > \{1/2\})$
 - ▷ Btw: this supersedes the account in Roversi (2020), which was based on a faulty empirical generalization

(27) Full algorithm for T probing:

- ▶ Plan A probe. If subject has [3AUG]:
 - ▷ Interact with subject, move subject, halt (SAT!)

S↓, O→	1	12	2	3Aug_{π}	$3min_{\pi}$	DP	
1	_	_	S+O	S	S	S	
12	_	_	_	S	S	S	
2	S	_	_	S	S	S	
3Aug_{π}	S	S	S	S	S	S	1
$3min_{\pi}$	O	O	O	O	S	S	
DP	O	O	O	O	S	S	

- ► Else, if subject has [PART] $(S \in \{\{1/12/2\}MIN, \{1/12/2\}AUG\})$
 - ▷ Interact with subject, move subject
 - ▷ Dynamic interaction: copy [PART] onto the INT condition
 - \triangleright If subject has [ADDR]: (S $\in \{\{12/2\}\text{MIN}, \{12/2\}\text{AUG}\}$)
 - ▷ Halt (SAT!)

$S\downarrow$, $O\rightarrow$	1	12	2	3Aug_{π}	$3min_{\pi}$	DP	•
1	_	_	S+O	S	S	S	-
12	_	_	_	S	S	S	١,
2	S	_	_	S	S	S	-
3Aug_{π}	S	S	S	S	S	S	•
$3min_{\pi}$	O	O	O	O	S	S	
DP	O	O	O	O	S	S	

- \triangleright Else: (S \in 1MIN, 1AUG)
 - \triangleright If object has [PART]: $(0 \in \{2min, 2aug\})$
 - ▷ Interact with object, move object, halt (SAT!)
 - Else: (0 ∈ {3AUG.pro, 3MIN.pro, DP})

$S\downarrow$, $O\rightarrow$	1	12	2	3Aug_{π}	$3min_{\pi}$	DP	
1	_	-1	S+O	S	S	S	/
12	_	_ '	_	S	S	S	•
2	S	_	_	S	S	S	
3Aug_{π}	S	S	S	S	S	S	
$3min_{\pi}$	O	O	O	O	S	S	
DP	O	O	O	O	S	S	

- ► Else, if subject has neither [PART] nor [3AUG] (S ∈ {3MIN.pro, DP}):
 - ▷ If object has [PART] or [3AUG]:
 - ▷ Interact with object, move object, halt (end of c-command domain)
 - \triangleright Else: (0 \in {3min.pro, DP})
 - ▷ Don't interact with anything, halt (end of c-command domain)

$S\downarrow$, $O\rightarrow$	1	12	2	3Aug_{π}	3min_{π}	DP
1	_	_	S+O	S	S	S
12	_	_	_	S	S	S
2	S	_	_	S	S	S
3Aug_{π}	S	S	S	S	S	S
$3min_{\pi}$	О	0	O	0	S	S
DP	О	O	O	O	S	S

- ▶ Plan B-probe. If Plan A-probe moved any nominal:
 - ▷ Interact with that nominal, halt (SAT!)
 (= don't do anything)
- ▶ Else, if Plan A-probe did not move anything:
 - ▷ If subject has [phi]: interact with subject, move subject,
 halt (SAT!)

S↓, O→	1	12	2	3Aug_{π}	$3min_{\pi}$	DP
1	_	_	S+O	S	S	S
12	_	_	_	S	S	S
2	S	_	_	S	S	S
3Aug_{π}	S	S	S	S	S	S
$3min_{\pi}$	O	O	O	O	S	S
DP	O	O	O	O	S	S

B THE MORPHOLOGY OF ÄIWOO PRONOUNS

- ▶ My claim is that all the boxed things in (28) are **pronouns**. How does it work?
- (28) a. *Mary ku-potaa-mu=waa*Mary IPFV-search.uv-2MIN=FUT
 'You will look for Mary'
 - b. (iumu) ku-potaa-gu-mu=waa Mary
 2MIN IPFV-search.uv-obj-2MIN=FUT Mary
 'Mary will look for you'
 - c. ([ijii]) ku-potaa-[i]=laa [iumu]
 3AUG IPFV-search.UV-3AUG=FUT 2MIN

 'They will look for you'
 - d. ngâgu-**mu** to-**2min** 'To you'
 - ▶ Idea: pronouns come in two forms, long and short
 - ▷ The short form is found immediately after a verb or a preposition
 - Otherwise, we find the long form

B.1 The syntactic structure of Äiwoo pronouns

▶ The full forms of pronouns are **bimorphemic**: a "stem" $i\sim iu$ - and the same suffixal paradigm we find attached to verbs and prepositions

	Pronoun	Suffix		Pronoun	Suffix
1 _{MIN}	iu	-no	1AUG	iu-ngo(pu)	-ngo(pu)
12min	iu-ji	-ji	12aug	iu-de	-de
2min	iu-mu	-mu	2aug	i-mi	-mi
3min	inâ/ine	$-\varnothing^n$	3aug	iji-i	-i

- ▷ Only exception: 1MIN *iu* vs. -no (I just have to treat this as idiosyncratic)
- ▷ 3AUG also has a different base, *iji*-(see (30) for why I'm segmenting it this way)
- \triangleright 3MIN "Ø": the suffix itself is segmentally null, but if followed by =Caa fut, =Cä cv, =Câ/Ce dist/Prox, these must take their n-initial form
- $\triangleright in\hat{a}/ine: i-\varnothing^n = n\hat{a}/ne$ 'PRON-3MIN=DIST/PROX'
- ▶ Evidence for segmentation: you can put stuff in between the two parts

- ⊳ Note: 2AUG *i-mi* vs. *iu-du-mi* is just regular phonology
- ► Analysis: pronouns have two structural layers (31)
 - \triangleright The φ-features have a constant spell-out, e.g. -de for 12AUG (31a) (the only exception is 1MIN, which has a couple different allomorphs)
 - \triangleright The π head is spelled out as *i~iu-* when word-initial, and null otherwise (31b)
 - \triangleright We also need to take care of it becoming -gu when accusative and non-word-initial, which might be hard?)
- (31) Syntactic structure of Äiwoo pronouns:

$$πP$$
a. $[12AUG] \Leftrightarrow -de$
b. $π \Leftrightarrow i(u) - / # _$

$$π ⇔ Ø (elsewhere)$$

$$(π[ACC] ⇔ -gu / non-word-initial??)$$

B.2 Spelling out pronouns: mapping syntax to morphology

- ► The structure and VI rules in (31) are meant to cover, for example, UV_{plain} cases, where a pronominal subject is in spec,TP:
- (32) a. sii ki-ngä-de=ngaa fish ipfv-eat.uv-12AuG=fut 'We.incl will eat the fish'

- ▶ Do we know that the πP or its spell-out *-de* is actually part of the same phonological word as the verb?
 - ∀es: it changes stress (33), and can trigger vowel harmony (not shown here)
- (33) Trochaic stress, from the right:
 - a. /kje(pávi) (méri)/

 ki-epavi Mary

 IPFV-cook.uv Mary

 'Mary is cooking'
- b. /(kjèpa)(vímu)/ki-epavi-muIPFV-cook.uv-2MIN'You are cooking'
- \blacktriangleright Problem: why can't the whole πP be spelled out as its own phonological word?
 - \triangleright I.e.: how does π know that it's not word-initial, and therefore must use the null allomorph?

- ► An idea to deal with all of this might come from those cases where the same argument is both in spec,TP and spec,CP, but the TP-copy *must* be realized:
 - \triangleright UV_{gu} for objects (34a), UV_{SVO} for subjects (34b)
 - \triangleright Note that the highest copy in spec,CP is always optional, and the lowest copy (in the ν P) domain is never spelled out (unless it's the only instance of something that has never moved, like the object in (34b))

- ▶ Why is the spec,TP copy obligatorily realized, when this pronoun then moves up?
- ▶ Idea (stipulation): the π head has a requirement of becoming part of a larger phonological word if it can, attaching leftward

 - \triangleright What we need: φ undergoes m-merger onto π , and then π onto C
- (35) a. Before m-merger:

b. After m-merger:

► Steps:

- \triangleright First, the φ head m-merges with the π head
- \triangleright Then, the complex π head m-merges with C
- ► Note: m-merger is postsyntactic, so after it takes place there really is no trace in spec,TP anymore, I'm just striking out that copy for clarity
- Now, the $\pi+\phi$ head is *not* a trace, and because of the Stray Affix Filter it must be spelled out, with π getting the correct null allomorph
- ▶ Why can't m-merger happen in spec,CP (and for a pronoun that's remained in situ in the ν P, e.g. the object pronoun in (34b)?
 - ⊳ For the spec,CP one: there's nothing to its left for it to lean on?
 - ⊳ For the one in spec, *v*P: it could in principle m-merge with T, but maybe the lower phase is spelled out on its own and that's why it can't?